If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-24v^2+12v+1=0
a = -24; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·(-24)·1
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{15}}{2*-24}=\frac{-12-4\sqrt{15}}{-48} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{15}}{2*-24}=\frac{-12+4\sqrt{15}}{-48} $
| -7+2n=-3 | | y^2=171 | | -3p+10p= | | 5.4=-t/15 | | 7p-10=2p+15 | | 1/2(10x+42)=12+5x | | x-12+27=16 | | 4x+5x-30=180 | | b^2=171 | | -8-2x/3=-6 | | 30x=900-30x | | 4x-x=6+8 | | 2p+10=-8p | | 9x+8=90 | | 8+3(2x+1)=0 | | 3m-1=-8 | | 2(5x-8)+2(3x)=P | | 1.72=4.7x+3.6 | | 8x=144-18x | | 28+j=25 | | x^2-10x+25=3x-3 | | 20=-4(3a-12) | | 8(3x-10)+15=79 | | |9x-6|6=30 | | 6+1/2x=8 | | 15x^2-x-2/3x+1=0 | | 123-(6x+16)=6(x+7)+x | | 4x=3914+(14=94+9) | | 5(x+6)=2(x-15) | | 10+4s=2 | | 3x=34-34 | | 5x^2-100x+465=0 |